
 

 
Abstract –– Sine and Cosine waves have been used in 

countless applications; in recent research on Software Defined 
Radio (SDR), digital modalities of sine and cosine waves have 
received special attention. SDR involves highly reconfigurable 
resources and uses digital generated waves for modulation and 
demodulation of signals. Coordinate Rotation Digital Computer 
(CORDIC) is a well known algorithm used to approximate 
iteratively some transcendental functions. In this work, a 
pipelined CORDIC architecture is used for designing a flexible 
and scalable digital sine and cosine waves generator. An 
FPGA-Based architecture is presented and the design has been 
implemented on a Xilinx Spartan 3 device. Synthesis and 
implementation results are shown and discussed. 
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I.  INTRODUCTION 

 
 There are plenty of applications which require digital 
wave generators. Wireless and mobile systems are among 
the fastest growing application areas; in particular, Software 
Defined Radio (SDR) is currently a focus of research and 
development. An SDR system allows performing many 
functions based on a single hardware platform, thus highly 
reconfigurable resources for signal processing are needed, 
mainly for modulation and demodulation of digital signals. 
Fields of development are increasing every day with 
applications such as cell phones or military 
communications. 
 
 There are several ways to generate digital sine and 
cosine waves, all of them based on trigonometric functions. 
The use of previously calculated tables is one of the choices, 
but it requires excessive memory usage when good 
quantization level is needed. CORDIC algorithm on the 
other hand, offers an excellent alternative, and its best 
characteristic is flexibility. It allows having as much 
quantization accuracy as permitted by word length. So it is 
useful to generate low frequencies without losing definition. 
  
 CORDIC algorithm, also known as Volder algorithm, 
had its first application in pocket calculators but nowadays 
is used to design coprocessors, build Discrete Fourier and 
Cosine transforms, among other mathematical processes 
[1-6]. For its electronic implementation, CORDIC offers the 
favorable condition of not requiring either multiplication or 
division blocks, instead of that, it works only with 
adder-subtractor and shifter. 

Reconfigurable computing techniques combine software 
flexibility with hardware performance. System designers 
may use FPGA technologies in different ways. In this work, 
FPGA is used for quick prototyping and testing. CORDIC 
characteristics and FPGA flexibility are used to implement 
CORDIC in pipeline, so iterative cycles in CORDIC are 
avoided. 
 
 Present work is divided as follows: Section II introduces 
CORDIC algorithm; Section III presents architecture and 
details of the pipeline and angles sequencer; Section IV is 
dedicated to results and at Section V conclusions are 
discussed. 
 

II.  CORDIC ALGORITHM 
 

 There exist two modalities of CORDIC algorithm, 
vectoring and rotation mode. In vectoring mode, coordinates 
(x0,y0) are rotated until y0 converges to zero. In rotation 
mode, initial vector (x0,y0) starts aligned with the x axis and 
is rotated by an angle of θi every cycle, so after n iterations, 
θn is the obtained angle. For this work, rotation mode is used 
to approximate sine and cosine functions.  

 
The way CORDIC works is related to trigonometric 

functions properties. The main idea consists in taking a 
unary vector and applying successive rotations, called 
microrotations, until the desired angle is reached. The 
rotating vector is unary, so after n iterations it will contain 
sinθn and cosθn in its second and first components 
respectively. In the following paragraphs it will be shown 
that calculus can be simplified if the starting vector is 
approximated to a constant value K. 

 
Starting vector is defined as v0=(x0,y0). In order to make 

the vector rotation, a linear transform, which can be 
described by a matrix which is multiplied by a vector, is 
used. After n iterations, the vector (xn,yn) is 
 

xn = x0  cos θ - y0  sin θ     (1) 
yn = y0  cos θ + x0  sin θ    (2) 

 
 In each iteration i, the vector performs a microrotation 
by θi, so the new vector is calculated with a similar function: 
 

xi+1 = xi  cos θi+1 – yi  sin θi+1     (3) 
yi+1 = yi  cos θi+1 + xi  sin θi+1   (4) 
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-1 sin zi < 0 
+1 sin zi ≥ 0 

 When the term cos θi+1 is factorized, components in the 
vector are described by 
 

xi+1 =  cosθi+1 (xi – yi  tan θi+1 )     (5) 
yi+1 = cosθi+1 (yi+ xi  tan θi+1 )    (6) 

 
tan θi+1 is restricted to ± 2-i, so multiplication is converted in 
an arithmetic right shift. It is also useful to use the identity 
cos θi+1 = cos ( arctan 2-i ) to define the next variables 
 

Ki =  cos ( arctan 2-i ) = 1/√(1+2-2i)    (7) 
di = ± 1          (8) 

 
 Cosine is an even function, therefore cos (α) = cos (-α). 
So (5) and (6) can be transformed into  
 

xi+1 =  Ki (xi – yi di 2-i
 )     (9) 

yi+1 =  Ki (yi + xi di 2-i
 )     (10) 

 
 Multiplication by Ki is avoided by considering it as a 
gain factor for all iterations. If n iterations are performed, 
then K is defined as the multiplication of every Ki . 
 

K = ∏Ki = ∏ 1/√(1+2-2i)    (11) 
 
Ki is retired from (9) and (10), then it is considered at the 
starting vector, which must be initialized as v0 = (|K|,0). At 
the end of n rotations, the length of vector will be 1, so its 
components will contain cosine and sine values of the 
desired angle (Fig. 1). As the vector is initialized with 
constant K, the vector components for each iteration are 
simplified to 
 

xi+1 =  xi – yi di 2-i
       (12) 

yi+1 =  yi + xi di 2-i
       (13) 

 
 On each iteration it is necessary to decide whether di=1 
or di=-1. In order to make that decision, the difference 
between the desired angle and the current angle is used. So a 
new variable known as accumulator is defined as 
 

zi+1 =  zi –  di  arctan 2-i
       (14) 

 
 The value of z0 is the angle for which sine and cosine 
are to be calculated. To know whether di should be positive 
or negative, the following rule is used 
 
 

  di =  (15) 
 

 
 

Fig. 1.  Microrotations with K compensation. 
 
 The sum of the rotating angles gives the desired angle 
 

θn = ∑ di arctan 2-i   (16) 
 
 Because the first tangent value is 20=1, it is possible to 
rotate angles only in the range [-π/2,π/2], which is the 
convergence range. Arctan 2-i can be calculated a priori to 
avoid the implementation of a arctan function on the FPGA. 
 

III.  ARCHITECTURE 
 
 As it has been mentioned, a CORDIC implementation 
does not need to have either sine or cosine values on 
memory, instead, it approximates the results on each step of 
the iterative process. The proposed architecture may be 
extended for a specific resolution without a considerable 
increase in the number of components used. 
 
 Iterative CORDIC implementations take more than a 
clock cycle for each output value. It is useful when no 
successive calculi are needed; such is the case of calculators. 
In this work, a generator needs to calculate successive 
values of sine and cosine. Therefore the proposed digital 
wave generator has a pipelined CORDIC module as nucleus. 
It is composed of three adders-subtractors and two 
arithmetic shifters (Fig. 2). Each adder-subtractor is 
associated to one of the variables of vector component and 
accumulator angle, called x, y, z. Each module has three 
inputs and outputs of this type, a clock signal and an input to 
manage cosine inversion, which is used to decide whether or 
not to correct the quadrant in cosine function. This is 
necessary due to the convergence range of CORDIC 
explained en section II. Details about cosine inversion will 
be given when angle sequencer is explained. In an iterative 
implementation of CORDIC, a step control module is 
necessary to adapt the shift amount to the corresponding 
iteration. The first iteration there is only one move shift, for 
the second there will be two moves and so on. 



 

 
 

Fig. 2.  Iterative CORDIC 
 
In order to reduce the number of clock cycles, the proposed 
pipelined architecture uses a set of stages, each of them 
based on iterative CORDIC module, but shifts are fixed 
instead of having a step control to change shift amount.  
 
A.  Pipeline 
 
 CORDIC pipelined implementation uses the basic 
CORDIC module described. If an iterative implementation 
of CORDIC were used, the generator would take several 
clock cycles to build a single output sample of the wave. 
However, using pipeline converts iterations into pipeline 
phases. In this way an output is obtained at every clock 
cycle, after pipeline stages propagation. Each pipeline stage 
takes exactly one clock cycle to complete. In Fig. 3, 
registers are implicit between each stage. 
 
 One of the most recurrent problems for a CORDIC 
implementation is overflow. It is mentioned in some 
previous works [1],[6], but not solved. The risk is present 
when angles π/2 or -π /2 are reached. This is due to the fact 
that the difference in binary representation between these 
two angles is one bit. When approximation is being made, 
an angle could cross from a positive right angle to a negative 
one. Overflow is solved by adding an overflow control 
which checks for the signs of the operands involved in 
additions or substraction and the result of the operation. 
When an overflow is produced, the result keeps its last sign; 
this method does not affect the final result. For each stage, 
the value arctan 2–i is taken from memory. In the overflow 
control the sign of zi is used to determine di, so for each 
stage di is applied as input to adders-subtractors to decide if 
a sum or a subtraction is performed. 
 
B. Angle Sequencer 
 
 CORDIC is a module which calculates sine and cosine 
given an angle, so it is necessary to give it a sequence of 
angles in the range of CORDIC convergence. It is not a 
simple sequence of angles, but it must be able to change 
frequency of the signal created by CORDIC. The module 

created to accomplish this function has been called angle 
sequencer. Given than CORDIC only converges within the 
first and fourth quadrant, it was needed a sequencer to 
generate angles going from 0  to  π/2, then from π /2 to -π/2 
and finally from π/2 to 0. To solve this, a sawtooth wave 
generator was build. It starts at zero and increases its output 
value until 2n, where n is the angle depth in bits. As 2’s 
complement logic is used, once 2n is reached the signal goes 
from the top positive value to the minimum negative value, 
then it increases again and repeats the cycle. 

 
 

Fig. 3.  Pipelined CORDIC 
 

 
 

Fig. 4.  Angles Sequencer signal 
 
 Sawtooth wave is not useful by itself, it needs to be 
transformed into a triangle wave to feed the CORDIC 
module. Triangle must represent the travel made on first and 
fourth quadrants. Sawtooth wave is transformed into triangle 



 

wave by looking at two most significant bits because they 
indicate the current quadrant. When the two most significant 
bits are 01 or 10, then the sawtooth signal must be 
transformed. That is done by mean of inverting every single 
bit, without changing the sign bit (Fig. 4). This scheme had 
been previously explored by Norbert Lindlbauer [5] in a 
sound synthesizer, but we have reduced one bit from the 
sawtooth wave and applied quadrant correction on the fly. 
The speed of the sawtooth wave determines the frequency of 
the sine and cosine waves. In fact, sine and cosine waves 
will have the same frequency than the triangle wave.  
 
 Let us denote with t the time in seconds which takes a 
cycle in the reference clock. CORDIC algorithm is able to 
perform a maximum of 1/t Hz. As stated by Nyquist, the 
higher frequency for the output is (2t)-1 Hz. To establish a 
relation between the increase value in sawtooth wave and 
output frequency, the following formula is used, having n as 
depth in bits. Let w be the increase value for the sawtooth 
wave; fr the reference clock frequency and fo the frequency 
of output waves. w is expressed in terms of fr and fo in the 
following way: 
 

w= (2n+1fr) / fo     (17) 
 

IV.  RESULTS 
 
 All modules were written in VHDL and tested as 
components, which were simulated on ModelSim. All 
critical cases, such as high and low frequencies responses, 
were tested. This was accomplished by testing the whole 
angle sequencer's dynamic range. The full design was 
targeted to a Xilinx Spartan 3 xc3s200-5ft256, using Xilinx 
ISE 7.1 to synthesize and implement the architecture. Speed 
and area optimization were tested. Tables 1 and 2 show the 
comparative results. 
 
 Output values were tested using a black box component 
in Xilinx System Generator to include VHDL design. JTAG 
library was built in order to perform hardware co-simulation 
and plot sine and cosine waves using Simulink. When 
synthesis was optimized for speed, the maximum frequency 
of operation was estimated in 154.9MHz. 

 
V.  CONCLUSION 

 
 It has been presented a pipelined CORDIC-based 
architecture for sine and cosine waves generator targeted to 
support modulation and demodulation in SDR. Compared 
with other techniques, CORDIC has shown to have benefits 
when applied to SDR. The main one is that CORDIC makes 
possible creating high accuracy waves, even for low 
frequencies.  In this work CORDIC has been implemented 
in pipeline to avoid iterative cycles, which means that a 
sample output is presented on each clock cycle. 

 

 
 

Overflow and quadrant correction are CORDIC inherent 
issues which had not been detailed in other related work. A 
solution for them was presented and the implementation 
results on a FPGA Xilinx Spartan 3 were presented and 
discussed. 
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  TABLE II 
AREA OPTIMIZATION RESULTS 

 

Parameter Used % 

Number of Slices 1075 55 
Number of Flip Flops 570 14 
Numer of 4 input LUTs 1737 44 
Number of bonded IOBs 43 24 
Number of GCLKs 1 12 
Maximum Frequency  124.67MHz 

  TABLE I 
SPEED OPTIMIZATION RESULTS 

 

Parameter Used % 

Number of Slices 1104 57 
Number of Flip Flops 615 16 
Numer of 4 input LUTs 1748 45 
Number of bonded IOBs 43 24 
Number of GCLKs 1 12 
Maximum Frequency  154.69MHz 
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