

Abstract –– Sine and Cosine waves have been used in

countless applications; in recent research on Software Defined
Radio (SDR), digital modalities of sine and cosine waves have
received special attention. SDR involves highly reconfigurable
resources and uses digital generated waves for modulation and
demodulation of signals. Coordinate Rotation Digital Computer
(CORDIC) is a well known algorithm used to approximate
iteratively some transcendental functions. In this work, a
pipelined CORDIC architecture is used for designing a flexible
and scalable digital sine and cosine waves generator. An
FPGA-Based architecture is presented and the design has been
implemented on a Xilinx Spartan 3 device. Synthesis and
implementation results are shown and discussed.

Keywords –– CORDIC, FPGA, SDR.

I. INTRODUCTION

 There are plenty of applications which require digital
wave generators. Wireless and mobile systems are among
the fastest growing application areas; in particular, Software
Defined Radio (SDR) is currently a focus of research and
development. An SDR system allows performing many
functions based on a single hardware platform, thus highly
reconfigurable resources for signal processing are needed,
mainly for modulation and demodulation of digital signals.
Fields of development are increasing every day with
applications such as cell phones or military
communications.

 There are several ways to generate digital sine and
cosine waves, all of them based on trigonometric functions.
The use of previously calculated tables is one of the choices,
but it requires excessive memory usage when good
quantization level is needed. CORDIC algorithm on the
other hand, offers an excellent alternative, and its best
characteristic is flexibility. It allows having as much
quantization accuracy as permitted by word length. So it is
useful to generate low frequencies without losing definition.

 CORDIC algorithm, also known as Volder algorithm,
had its first application in pocket calculators but nowadays
is used to design coprocessors, build Discrete Fourier and
Cosine transforms, among other mathematical processes
[1-6]. For its electronic implementation, CORDIC offers the
favorable condition of not requiring either multiplication or
division blocks, instead of that, it works only with
adder-subtractor and shifter.

Reconfigurable computing techniques combine software
flexibility with hardware performance. System designers
may use FPGA technologies in different ways. In this work,
FPGA is used for quick prototyping and testing. CORDIC
characteristics and FPGA flexibility are used to implement
CORDIC in pipeline, so iterative cycles in CORDIC are
avoided.

 Present work is divided as follows: Section II introduces
CORDIC algorithm; Section III presents architecture and
details of the pipeline and angles sequencer; Section IV is
dedicated to results and at Section V conclusions are
discussed.

II. CORDIC ALGORITHM

 There exist two modalities of CORDIC algorithm,
vectoring and rotation mode. In vectoring mode, coordinates
(x0,y0) are rotated until y0 converges to zero. In rotation
mode, initial vector (x0,y0) starts aligned with the x axis and
is rotated by an angle of θi every cycle, so after n iterations,
θn is the obtained angle. For this work, rotation mode is used
to approximate sine and cosine functions.

The way CORDIC works is related to trigonometric

functions properties. The main idea consists in taking a
unary vector and applying successive rotations, called
microrotations, until the desired angle is reached. The
rotating vector is unary, so after n iterations it will contain
sinθn and cosθn in its second and first components
respectively. In the following paragraphs it will be shown
that calculus can be simplified if the starting vector is
approximated to a constant value K.

Starting vector is defined as v0=(x0,y0). In order to make

the vector rotation, a linear transform, which can be
described by a matrix which is multiplied by a vector, is
used. After n iterations, the vector (xn,yn) is

xn = x0 cos θ - y0 sin θ (1)
yn = y0 cos θ + x0 sin θ (2)

 In each iteration i, the vector performs a microrotation
by θi, so the new vector is calculated with a similar function:

xi+1 = xi cos θi+1 – yi sin θi+1 (3)
yi+1 = yi cos θi+1 + xi sin θi+1 (4)

Pipelined CORDIC Design on FPGA for a Digital Sine and Cosine Waves
Generator

Esteban O. Garcia, Rene Cumplido, Miguel Arias
Department of Computer Science, INAOE. Puebla, Mexico

Phone +52 222 2663100 Fax +52 222 2663152 E-mail:{eomargr,rcumplido,ariasm}@inaoep.mx

-1 sin zi < 0
+1 sin zi ≥ 0

 When the term cos θi+1 is factorized, components in the
vector are described by

xi+1 = cosθi+1 (xi – yi tan θi+1) (5)
yi+1 = cosθi+1 (yi+ xi tan θi+1) (6)

tan θi+1 is restricted to ± 2-i, so multiplication is converted in
an arithmetic right shift. It is also useful to use the identity
cos θi+1 = cos (arctan 2-i) to define the next variables

Ki = cos (arctan 2-i) = 1/√(1+2-2i) (7)
di = ± 1 (8)

 Cosine is an even function, therefore cos (α) = cos (-α).
So (5) and (6) can be transformed into

xi+1 = Ki (xi – yi di 2-i
) (9)

yi+1 = Ki (yi + xi di 2-i
) (10)

 Multiplication by Ki is avoided by considering it as a
gain factor for all iterations. If n iterations are performed,
then K is defined as the multiplication of every Ki .

K = ∏Ki = ∏ 1/√(1+2-2i) (11)

Ki is retired from (9) and (10), then it is considered at the
starting vector, which must be initialized as v0 = (|K|,0). At
the end of n rotations, the length of vector will be 1, so its
components will contain cosine and sine values of the
desired angle (Fig. 1). As the vector is initialized with
constant K, the vector components for each iteration are
simplified to

xi+1 = xi – yi di 2-i
 (12)

yi+1 = yi + xi di 2-i
 (13)

 On each iteration it is necessary to decide whether di=1
or di=-1. In order to make that decision, the difference
between the desired angle and the current angle is used. So a
new variable known as accumulator is defined as

zi+1 = zi – di arctan 2-i
 (14)

 The value of z0 is the angle for which sine and cosine
are to be calculated. To know whether di should be positive
or negative, the following rule is used

 di = (15)

Fig. 1. Microrotations with K compensation.

 The sum of the rotating angles gives the desired angle

θn = ∑ di arctan 2-i (16)

 Because the first tangent value is 20=1, it is possible to
rotate angles only in the range [-π/2,π/2], which is the
convergence range. Arctan 2-i can be calculated a priori to
avoid the implementation of a arctan function on the FPGA.

III. ARCHITECTURE

 As it has been mentioned, a CORDIC implementation
does not need to have either sine or cosine values on
memory, instead, it approximates the results on each step of
the iterative process. The proposed architecture may be
extended for a specific resolution without a considerable
increase in the number of components used.

 Iterative CORDIC implementations take more than a
clock cycle for each output value. It is useful when no
successive calculi are needed; such is the case of calculators.
In this work, a generator needs to calculate successive
values of sine and cosine. Therefore the proposed digital
wave generator has a pipelined CORDIC module as nucleus.
It is composed of three adders-subtractors and two
arithmetic shifters (Fig. 2). Each adder-subtractor is
associated to one of the variables of vector component and
accumulator angle, called x, y, z. Each module has three
inputs and outputs of this type, a clock signal and an input to
manage cosine inversion, which is used to decide whether or
not to correct the quadrant in cosine function. This is
necessary due to the convergence range of CORDIC
explained en section II. Details about cosine inversion will
be given when angle sequencer is explained. In an iterative
implementation of CORDIC, a step control module is
necessary to adapt the shift amount to the corresponding
iteration. The first iteration there is only one move shift, for
the second there will be two moves and so on.

Fig. 2. Iterative CORDIC

In order to reduce the number of clock cycles, the proposed
pipelined architecture uses a set of stages, each of them
based on iterative CORDIC module, but shifts are fixed
instead of having a step control to change shift amount.

A. Pipeline

 CORDIC pipelined implementation uses the basic
CORDIC module described. If an iterative implementation
of CORDIC were used, the generator would take several
clock cycles to build a single output sample of the wave.
However, using pipeline converts iterations into pipeline
phases. In this way an output is obtained at every clock
cycle, after pipeline stages propagation. Each pipeline stage
takes exactly one clock cycle to complete. In Fig. 3,
registers are implicit between each stage.

 One of the most recurrent problems for a CORDIC
implementation is overflow. It is mentioned in some
previous works [1],[6], but not solved. The risk is present
when angles π/2 or -π /2 are reached. This is due to the fact
that the difference in binary representation between these
two angles is one bit. When approximation is being made,
an angle could cross from a positive right angle to a negative
one. Overflow is solved by adding an overflow control
which checks for the signs of the operands involved in
additions or substraction and the result of the operation.
When an overflow is produced, the result keeps its last sign;
this method does not affect the final result. For each stage,
the value arctan 2–i is taken from memory. In the overflow
control the sign of zi is used to determine di, so for each
stage di is applied as input to adders-subtractors to decide if
a sum or a subtraction is performed.

B. Angle Sequencer

 CORDIC is a module which calculates sine and cosine
given an angle, so it is necessary to give it a sequence of
angles in the range of CORDIC convergence. It is not a
simple sequence of angles, but it must be able to change
frequency of the signal created by CORDIC. The module

created to accomplish this function has been called angle
sequencer. Given than CORDIC only converges within the
first and fourth quadrant, it was needed a sequencer to
generate angles going from 0 to π/2, then from π /2 to -π/2
and finally from π/2 to 0. To solve this, a sawtooth wave
generator was build. It starts at zero and increases its output
value until 2n, where n is the angle depth in bits. As 2’s
complement logic is used, once 2n is reached the signal goes
from the top positive value to the minimum negative value,
then it increases again and repeats the cycle.

Fig. 3. Pipelined CORDIC

Fig. 4. Angles Sequencer signal

 Sawtooth wave is not useful by itself, it needs to be
transformed into a triangle wave to feed the CORDIC
module. Triangle must represent the travel made on first and
fourth quadrants. Sawtooth wave is transformed into triangle

wave by looking at two most significant bits because they
indicate the current quadrant. When the two most significant
bits are 01 or 10, then the sawtooth signal must be
transformed. That is done by mean of inverting every single
bit, without changing the sign bit (Fig. 4). This scheme had
been previously explored by Norbert Lindlbauer [5] in a
sound synthesizer, but we have reduced one bit from the
sawtooth wave and applied quadrant correction on the fly.
The speed of the sawtooth wave determines the frequency of
the sine and cosine waves. In fact, sine and cosine waves
will have the same frequency than the triangle wave.

 Let us denote with t the time in seconds which takes a
cycle in the reference clock. CORDIC algorithm is able to
perform a maximum of 1/t Hz. As stated by Nyquist, the
higher frequency for the output is (2t)-1 Hz. To establish a
relation between the increase value in sawtooth wave and
output frequency, the following formula is used, having n as
depth in bits. Let w be the increase value for the sawtooth
wave; fr the reference clock frequency and fo the frequency
of output waves. w is expressed in terms of fr and fo in the
following way:

w= (2n+1fr) / fo (17)

IV. RESULTS

 All modules were written in VHDL and tested as
components, which were simulated on ModelSim. All
critical cases, such as high and low frequencies responses,
were tested. This was accomplished by testing the whole
angle sequencer's dynamic range. The full design was
targeted to a Xilinx Spartan 3 xc3s200-5ft256, using Xilinx
ISE 7.1 to synthesize and implement the architecture. Speed
and area optimization were tested. Tables 1 and 2 show the
comparative results.

 Output values were tested using a black box component
in Xilinx System Generator to include VHDL design. JTAG
library was built in order to perform hardware co-simulation
and plot sine and cosine waves using Simulink. When
synthesis was optimized for speed, the maximum frequency
of operation was estimated in 154.9MHz.

V. CONCLUSION

 It has been presented a pipelined CORDIC-based
architecture for sine and cosine waves generator targeted to
support modulation and demodulation in SDR. Compared
with other techniques, CORDIC has shown to have benefits
when applied to SDR. The main one is that CORDIC makes
possible creating high accuracy waves, even for low
frequencies. In this work CORDIC has been implemented
in pipeline to avoid iterative cycles, which means that a
sample output is presented on each clock cycle.

Overflow and quadrant correction are CORDIC inherent
issues which had not been detailed in other related work. A
solution for them was presented and the implementation
results on a FPGA Xilinx Spartan 3 were presented and
discussed.

AKNOWLEDGMENT

 This work has been partially supported by CONACYT,
under grant number 201562.

REFERENCES

 [1] Ray Andraka. “A survey of CORDIC algorithms for FPGA

based computers”. Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays ,
pages 192-200, New York, NY, USA, 1998. ACM Press.

 [2] Javier Valls, Martin Kuhlmann, and Keshar K. Parhi.
“Evaluation of CORDIC algorithms for FPGA design”. Journal
of VLSI Signal Processing. vol. 32, no. 3, pp. 207-222, 2002.

 [3] Uwe Meyer-Baese. Digital Signal Processing with Field
Programmable Gate Arrays. Springer-Verlag, New York, Inc.,
Secaucus, NJ, USA, pp. 70-75, 200.

 [4] Eckhard Grass, Bodhisatya Sarker, and Koushik Maharatna. “A
dual-mode synchronous/asynchronous CORDIC processor”.
Proceedings of the Eighth International Symposium on
Asynchronous Circuits and Systems, vol. 0, no. 76, 2002.

 [5] Bar-Giora Goldberg. Digital Frequency Synthesis Digital
Frequency Synthesis Demystified. LLH Technical Publishing,
1999.

 [6] Norbert Lindlbauer. Applications of FPGA’s to Musical Gesture
Communication and Processing. Master’s thesis, CNMAT,
University of California, Berkeley, 1999.

 [7] Jeffrey H. Reed. Software Radio: A modern approach to Radio
Engineering. Prentice-Hall, New Jersey, 2002.

 TABLE II
AREA OPTIMIZATION RESULTS

Parameter Used %

Number of Slices 1075 55
Number of Flip Flops 570 14
Numer of 4 input LUTs 1737 44
Number of bonded IOBs 43 24
Number of GCLKs 1 12
Maximum Frequency 124.67MHz

 TABLE I
SPEED OPTIMIZATION RESULTS

Parameter Used %

Number of Slices 1104 57
Number of Flip Flops 615 16
Numer of 4 input LUTs 1748 45
Number of bonded IOBs 43 24
Number of GCLKs 1 12
Maximum Frequency 154.69MHz

	Menu
	Message from the conference chair
	Message from head of the EED
	Committee
	Organizing Committee
	Topic Chairs
	Oral Sessions Chairs
	Reviewers
	Special Thanks

	Keynote Speakers
	Program
	Technical Program
	Oral Sessions
	Keynote Speakers
	Courses
	Abstract Book
	Author Index
	Cartel
	Brochure

	Sponsors
	Electrical Engineering Department
	Technical Support Information

	tit: 2006 3rd International Conference on Electrical and Electronics Engineering (ICEEE 2006)
	day: Veracruz, Veracruz, Mexico. September 6-8, 2006
	log:
	isbn: IEEE Catalog Number: 06EX1386
	cop: ISBN: 1-4244-0403-7
	lib: Library of Congress: 2006925539
	ccc: 1-4244-0403-7/06/$20.00 ©2006 IEEE.
	cie:
	104: 104
	105: 105
	106: 106
	107: 107

